Math 53 Discussion Problems Nov 7

- 1. * Find the maximum value of $f(x, y) = 6xye^{-2x-3y}$ in the closed first quadrant.
- 2. Find the minimum volume for a region bounded by the planes x = 0, y = 0, z = 0 and a plane tangent to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 3. * A heat-seeking particle has the property that at any point (x, y) in the plane it moves in the direction of maximum temperature increase. If the temperature at (x, y) is $T(x, y) = -e^{-2y} \cos x$, find an equation y = f(x) for the path of a heat-seeking particle at the point $(\frac{\pi}{4}, 0)$
- 4. Let S be the surface that is the graph of $f(x, y) = 10 x^2 y^2$. Suppose that the temperature in space at each point (x, y, z) is $T(x, y, z) = x^2y + y^2z + 4x + 14y + z$. Which direction tangential to S at the point (1, 1, 8) will make the rate of change of temperature a maximum?
- 5. Let $D_{\mathbf{u}}f$ denote the derivative of $f(x, y) = \frac{x^2+y^2}{2}$ in the direction of the unit vector $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j}$. Find the average value of $D_{\mathbf{u}}f$ over the triangular region cut from the first quadrant by the line x + y = 1.
- 6. Evaluate $\int_0^a \int_0^b e^{max\{b^2x^2,a^2y^2\}} dy dx$ where a and b are positive numbers and $max\{p,q\}$ denotes the larger of the two numbers p,q.
- 7. * A parabolic satellite dish is 2m wide and $\frac{1}{2}$ m deep. Its axis of symmetry is tilted 30° from the vertical. Set up, but do not evaluate a triple integral in rectangular coordinates that gives the amount of water the satellite dish will hold. (Hint: Put your coordinate system so that the satellite dish is upright and the plane of the water level is slanted)
- 8. * Evaluate $\int_0^\infty e^{-x^2} dx$ by evaluating $\int_0^\infty \int_0^\infty e^{-x^2-y^2} dx dy$ using polar coordinates.