Math 53 Discussion Problems Nov 7

1. * Find the maximum value of $f(x, y)=6 x y e^{-2 x-3 y}$ in the closed first quadrant.
2. Find the minimum volume for a region bounded by the planes $x=$ $0, y=0, z=0$ and a plane tangent to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
3. * A heat-seeking particle has the property that at any point (x, y) in the plane it moves in the direction of maximum temperature increase. If the temperature at (x, y) is $T(x, y)=-e^{-2 y} \cos x$, find an equation $y=f(x)$ for the path of a heat-seeking particle at the point $\left(\frac{\pi}{4}, 0\right)$
4. Let S be the surface that is the graph of $f(x, y)=10-x^{2}-y^{2}$. Suppose that the temperature in space at each point (x, y, z) is $T(x, y, z)=$ $x^{2} y+y^{2} z+4 x+14 y+z$. Which direction tangential to S at the point $(1,1,8)$ will make the rate of change of temperature a maximum?
5. Let $D_{\mathbf{u}} f$ denote the derivative of $f(x, y)=\frac{x^{2}+y^{2}}{2}$ in the direction of the unit vector $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$. Find the average value of $D_{\mathbf{u}} f$ over the triangular region cut from the first quadrant by the line $x+y=1$.
6. Evaluate $\int_{0}^{a} \int_{0}^{b} e^{\max \left\{b^{2} x^{2}, a^{2} y^{2}\right\}} d y d x$ where a and b are positive numbers and $\max \{p, q\}$ denotes the larger of the two numbers p, q.
7. * A parabolic satellite dish is 2 m wide and $\frac{1}{2} \mathrm{~m}$ deep. Its axis of symmetry is tilted 30° from the vertical. Set up, but do not evaluate a triple integral in rectangular coordinates that gives the amount of water the satellite dish will hold. (Hint: Put your coordinate system so that the satellite dish is upright and the plane of the water level is slanted)
8. * Evaluate $\int_{0}^{\infty} e^{-x^{2}} d x$ by evaluating $\int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}-y^{2}} d x d y$ using polar coordinates.
